Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell ; 187(4): 897-913.e18, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38280374

RESUMO

Canonically, the complement system is known for its rapid response to remove microbes in the bloodstream. However, relatively little is known about a functioning complement system on intestinal mucosal surfaces. Herein, we report the local synthesis of complement component 3 (C3) in the gut, primarily by stromal cells. C3 is expressed upon commensal colonization and is regulated by the composition of the microbiota in healthy humans and mice, leading to an individual host's specific luminal C3 levels. The absence of membrane attack complex (MAC) components in the gut ensures that C3 deposition does not result in the lysis of commensals. Pathogen infection triggers the immune system to recruit neutrophils to the infection site for pathogen clearance. Basal C3 levels directly correlate with protection against enteric infection. Our study reveals the gut complement system as an innate immune mechanism acting as a vigilant sentinel that combats pathogens and spares commensals.


Assuntos
Complemento C3 , Mucosa Intestinal , Microbiota , Animais , Humanos , Camundongos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Neutrófilos , Complemento C3/metabolismo , Células Estromais/metabolismo
2.
bioRxiv ; 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36778396

RESUMO

Canonically, complement is a serum-based host defense system that protects against systemic microbial invasion. Little is known about the production and function of complement components on mucosal surfaces. Here we show gut complement component 3 (C3), central to complement function, is regulated by the composition of the microbiota in healthy humans and mice, leading to host-specific gut C3 levels. Stromal cells in intestinal lymphoid follicles (LFs) are the predominant source of intestinal C3. During enteric infection with Citrobacter rodentium or enterohemorrhagic Escherichia coli, luminal C3 levels increase significantly and are required for protection. C. rodentium is remarkably more invasive to the gut epithelium of C3-deficient mice than of wild-type mice. In the gut, C3-mediated phagocytosis of C. rodentium functions to clear pathogens. Our study reveals that variations in gut microbiota determine individuals’ intestinal mucosal C3 levels, dominantly produced by LF stromal cells, which directly correlate with protection against enteric infection. Highlights: Gut complement component 3 (C3) is induced by the microbiome in healthy humans and mice at a microbiota-specific level.Gut stromal cells located in intestinal lymphoid follicles are a major source of luminal C3 During enteric infections with Citrobacter rodentium or enterohemorrhagic Escherichia coli, gut luminal C3 levels increase and are required for protection. C. rodentium is significantly more invasive of the gut epithelium in C3-deficient mice when compared to WT mice. In the gut, C3-mediated opsonophagocytosis of C. rodentium functions to clear pathogens.

3.
bioRxiv ; 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38187633

RESUMO

Matriglycan (-1,3-ß-glucuronic acid-1,3-α-xylose-) is a polysaccharide that is synthesized on α-dystroglycan, where it functions as a high-affinity glycan receptor for extracellular proteins, such as laminin, perlecan and agrin, thus anchoring the plasma membrane to the extracellular matrix. This biological activity is closely associated with the size of matriglycan. Using high-resolution mass spectrometry and site-specific mutant mice, we show for the first time that matriglycan on the T317/T319 and T379 sites of α-dystroglycan are not identical. T379-linked matriglycan is shorter than the previously characterized T317/T319-linked matriglycan, although it maintains its laminin binding capacity. Transgenic mice with only the shorter T379-linked matriglycan exhibited mild embryonic lethality, but those that survived were healthy. The shorter T379-linked matriglycan exists in multiple tissues and maintains neuromuscular function in adult mice. In addition, the genetic transfer of α-dystroglycan carrying just the short matriglycan restored grip strength and protected skeletal muscle from eccentric contraction-induced damage in muscle-specific dystroglycan knock-out mice. Due to the effects that matriglycan imparts on the extracellular proteome and its ability to modulate cell-matrix interactions, our work suggests that differential regulation of matriglycan length in various tissues optimizes the extracellular environment for unique cell types.

4.
Cell ; 185(22): 4190-4205.e25, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36243004

RESUMO

Neuroepithelial crosstalk is critical for gut physiology. However, the mechanisms by which sensory neurons communicate with epithelial cells to mediate gut barrier protection at homeostasis and during inflammation are not well understood. Here, we find that Nav1.8+CGRP+ nociceptor neurons are juxtaposed with and signal to intestinal goblet cells to drive mucus secretion and gut protection. Nociceptor ablation led to decreased mucus thickness and dysbiosis, while chemogenetic nociceptor activation or capsaicin treatment induced mucus growth. Mouse and human goblet cells expressed Ramp1, receptor for the neuropeptide CGRP. Nociceptors signal via the CGRP-Ramp1 pathway to induce rapid goblet cell emptying and mucus secretion. Notably, commensal microbes activated nociceptors to control homeostatic CGRP release. In the absence of nociceptors or epithelial Ramp1, mice showed increased epithelial stress and susceptibility to colitis. Conversely, CGRP administration protected nociceptor-ablated mice against colitis. Our findings demonstrate a neuron-goblet cell axis that orchestrates gut mucosal barrier protection.


Assuntos
Colite , Células Caliciformes , Camundongos , Humanos , Animais , Células Caliciformes/metabolismo , Nociceptores/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Colite/metabolismo , Muco/metabolismo , Proteína 1 Modificadora da Atividade de Receptores/metabolismo
6.
Elife ; 92020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32975514

RESUMO

Matriglycan [-GlcA-ß1,3-Xyl-α1,3-]n serves as a scaffold in many tissues for extracellular matrix proteins containing laminin-G domains including laminin, agrin, and perlecan. Like-acetyl-glucosaminyltransferase 1 (LARGE1) synthesizes and extends matriglycan on α-dystroglycan (α-DG) during skeletal muscle differentiation and regeneration; however, the mechanisms which regulate matriglycan elongation are unknown. Here, we show that Protein O-Mannose Kinase (POMK), which phosphorylates mannose of core M3 (GalNAc-ß1,3-GlcNAc-ß1,4-Man) preceding matriglycan synthesis, is required for LARGE1-mediated generation of full-length matriglycan on α-DG (~150 kDa). In the absence of Pomk gene expression in mouse skeletal muscle, LARGE1 synthesizes a very short matriglycan resulting in a ~ 90 kDa α-DG which binds laminin but cannot prevent eccentric contraction-induced force loss or muscle pathology. Solution NMR spectroscopy studies demonstrate that LARGE1 directly interacts with core M3 and binds preferentially to the phosphorylated form. Collectively, our study demonstrates that phosphorylation of core M3 by POMK enables LARGE1 to elongate matriglycan on α-DG, thereby preventing muscular dystrophy.


Assuntos
Distroglicanas/metabolismo , Expressão Gênica , Músculo Esquelético/fisiologia , N-Acetilglucosaminiltransferases/genética , Proteínas Quinases/genética , Animais , Masculino , Manose/química , Camundongos , N-Acetilglucosaminiltransferases/metabolismo , Fosforilação , Proteínas Quinases/metabolismo
7.
PLoS Genet ; 15(11): e1008497, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31747390

RESUMO

The lipopolysaccharide O-antigen structure expressed by the European Helicobacter pylori model strain G27 encompasses a trisaccharide, an intervening glucan-heptan and distal Lewis antigens that promote immune escape. However, several gaps still remain in the corresponding biosynthetic pathway. Here, systematic mutagenesis of glycosyltransferase genes in G27 combined with lipopolysaccharide structural analysis, uncovered HP0102 as the trisaccharide fucosyltransferase, HP1283 as the heptan transferase, and HP1578 as the GlcNAc transferase that initiates the synthesis of Lewis antigens onto the heptan motif. Comparative genomic analysis of G27 lipopolysaccharide biosynthetic genes in strains of different ethnic origin revealed that East-Asian strains lack the HP1283/HP1578 genes but contain an additional copy of HP1105 and JHP0562. Further correlation of different lipopolysaccharide structures with corresponding gene contents led us to propose that the second copy of HP1105 and the JHP0562 may function as the GlcNAc and Gal transferase, respectively, to initiate synthesis of the Lewis antigen onto the Glc-Trio-Core in East-Asian strains lacking the HP1283/HP1578 genes. In view of the high gastric cancer rate in East Asia, the absence of the HP1283/HP1578 genes in East-Asian H. pylori strains warrants future studies addressing the role of the lipopolysaccharide heptan in pathogenesis.


Assuntos
Infecções por Helicobacter/genética , Lipopolissacarídeos/genética , Antígenos O/genética , Neoplasias Gástricas/genética , Povo Asiático , Fucosiltransferases/genética , Fucosiltransferases/imunologia , Glucanos/genética , Glicosiltransferases/genética , Glicosiltransferases/imunologia , Infecções por Helicobacter/imunologia , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/patologia , Helicobacter pylori/genética , Helicobacter pylori/imunologia , Helicobacter pylori/patogenicidade , Humanos , Antígenos do Grupo Sanguíneo de Lewis/genética , Antígenos do Grupo Sanguíneo de Lewis/imunologia , Lipopolissacarídeos/química , Lipopolissacarídeos/imunologia , Mutagênese , Antígenos O/imunologia , Neoplasias Gástricas/epidemiologia , Neoplasias Gástricas/imunologia , Neoplasias Gástricas/patologia
8.
Cell Surf ; 2: 38-53, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30046665

RESUMO

The arabinan-containing polysaccharides, arabinogalactan (AG) and lipoarabinomannan (LAM), are key cell wall components of the Corynebacterineae, which include Corynebacteria, Norcadia and Mycobacteria. Both AG and LAM contain elaborate arabinan domains composed of distinct structural motifs. Mycobacterial EmbA, EmbB and EmbC, collectively known as the Emb proteins, have been identified as arabinosyltransferases (ArafTs), which are targeted by the front-line anti-tubercular drug ethambutol. Previous studies have established that EmbA and EmbB play a role in the synthesis of the characteristic terminal hexa-arabinosuranosyl motif, whilst EmbC is involved exclusively in the biosynthesis of LAM. Herein, we have investigated the role of the singular Emb protein from Corynebacterium glutamicum through the detailed biochemical and chemical analysis of a double ΔaftAΔemb mutant, where the priming Cg-AftA protein, which generates the substrate for Cg-Emb has been deleted. Analysis of its cell wall revealed a complete absence of arabinose resulting in a truncated cell wall containing only a galactan backbone accompanied with complete loss of cell wall bound mycolates. In vitro cell-free assays using C. glutamicumΔaftA, C. glutamicumΔemb, C. glutamicumΔaftAΔemb and C. glutamicumΔaftBΔaftD and two synthetic acceptors, which mimick the arabinofuranose (Araf) "primed" galactan chain, demonstrated that Cg-Emb is able to transfer an Araf residue to the C5 of the Araf positioned on the synthetic acceptor(s). These results indicate that Cg-Emb acts as an α(1 → 5) ArafT and elongates the arabinan core during the early stages of arabinan biosynthesis in C. glutamicum.

10.
Microb Cell ; 4(5): 175-178, 2017 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-28685143

RESUMO

H. pylori is a Gram-negative extracellular bacterium, first discovered by the Australian physicians Barry Marshall and Robin Warren in 1982, that colonises the human stomach mucosa. It is the leading cause of peptic ulcer and commonly infects humans worldwide with prevalence as high as 90% in some countries. H. pylori infection usually results in asymptomatic chronic gastritis, however 10-15% of cases develop duodenal or gastric ulcers and 1-3% develop stomach cancer. Infection is generally acquired during childhood and persists for life in the absence of antibiotic treatment. H. pylori has had a long period of co-evolution with humans, going back to human migration out of Africa. This prolonged relationship is likely to have shaped the overall host-pathogen interactions and repertoire of virulence strategies which H. pylori employs to establish robust colonisation, escape immune responses and persist in the gastric niche. In this regard, H. pylori lipopolysaccharide (LPS) is a key surface determinant in establishing colonisation and persistence via host mimicry and resistance to cationic antimicrobial peptides. Thus, elucidation of the H. pylori LPS structure and corresponding biosynthetic pathway represents an important step towards better understanding of H. pylori pathogenesis and the development of novel therapeutic interventions.

11.
PLoS Pathog ; 13(3): e1006280, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28306723

RESUMO

Helicobacter pylori lipopolysaccharide promotes chronic gastric colonisation through O-antigen host mimicry and resistance to mucosal antimicrobial peptides mediated primarily by modifications of the lipid A. The structural organisation of the core and O-antigen domains of H. pylori lipopolysaccharide remains unclear, as the O-antigen attachment site has still to be identified experimentally. Here, structural investigations of lipopolysaccharides purified from two wild-type strains and the O-antigen ligase mutant revealed that the H. pylori core-oligosaccharide domain is a short conserved hexasaccharide (Glc-Gal-DD-Hep-LD-Hep-LD-Hep-KDO) decorated with the O-antigen domain encompassing a conserved trisaccharide (-DD-Hep-Fuc-GlcNAc-) and variable glucan, heptan and Lewis antigens. Furthermore, the putative heptosyltransferase HP1284 was found to be required for the transfer of the third heptose residue to the core-oligosaccharide. Interestingly, mutation of HP1284 did not affect the ligation of the O-antigen and resulted in the attachment of the O-antigen onto an incomplete core-oligosaccharide missing the third heptose and the adjoining Glc-Gal residues. Mutants deficient in either HP1284 or O-antigen ligase displayed a moderate increase in susceptibility to polymyxin B but were unable to colonise the mouse gastric mucosa. Finally, mapping mutagenesis and colonisation data of previous studies onto the redefined organisation of H. pylori lipopolysaccharide revealed that only the conserved motifs were essential for colonisation. In conclusion, H. pylori lipopolysaccharide is missing the canonical inner and outer core organisation. Instead it displays a short core and a longer O-antigen encompassing residues previously assigned as the outer core domain. The redefinition of H. pylori lipopolysaccharide domains warrants future studies to dissect the role of each domain in host-pathogen interactions. Also enzymes involved in the assembly of the conserved core structure, such as HP1284, could be attractive targets for the design of new therapeutic agents for managing persistent H. pylori infection causing peptic ulcers and gastric cancer.


Assuntos
Helicobacter pylori/química , Helicobacter pylori/patogenicidade , Lipopolissacarídeos/química , Antígenos O/química , Animais , Western Blotting , Cromatografia Gasosa , Modelos Animais de Doenças , Infecções por Helicobacter/microbiologia , Interações Hospedeiro-Patógeno/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Ressonância Magnética Nuclear Biomolecular , Oligossacarídeos/química , Domínios Proteicos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
12.
J Biol Chem ; 291(42): 22106-22117, 2016 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-27539847

RESUMO

Serine-rich repeat glycoproteins (SRRPs) conserved in streptococci and staphylococci are important for bacterial colonization and pathogenesis. Fap1, a well studied SRRP is a major surface constituent of Streptococcus parasanguinis and is required for bacterial adhesion and biofilm formation. Biogenesis of Fap1 is a multistep process that involves both glycosylation and secretion. A series of glycosyltransferases catalyze sequential glycosylation of Fap1. We have identified a unique hybrid protein dGT1 (dual glycosyltransferase 1) that contains two distinct domains. N-terminal DUF1792 is a novel GT-D-type glycosyltransferase, transferring Glc residues to Glc-GlcNAc-modified Fap1. C-terminal dGT1 (CgT) is predicted to possess a typical GT-A-type glycosyltransferase, however, the activity remains unknown. In this study, we determine that CgT is a distinct glycosyltransferase, transferring GlcNAc residues to Glc-Glc-GlcNAc-modified Fap1. A 2.4-Å x-ray crystal structure reveals that CgT has a unique binding domain consisting of three α helices in addition to a typical GT-A-type glycosyltransferase domain. The helical domain is crucial for the oligomerization of CgT. Structural and biochemical studies revealed that the helix domain is required for the protein-protein interaction and crucial for the glycosyltransferase activity of CgT in vitro and in vivo As the helix domain presents a novel structural fold, we conclude that CgT represents a new member of GT-A-type glycosyltransferases.


Assuntos
Proteínas de Fímbrias/química , Glicosiltransferases/química , Streptococcus/enzimologia , Motivos de Aminoácidos , Cristalografia por Raios X , Proteínas de Fímbrias/genética , Glicosiltransferases/genética , Domínios Proteicos , Streptococcus/genética
13.
J Biol Chem ; 291(53): 27354-27363, 2016 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-28039332

RESUMO

Serine-rich repeat glycoproteins (SRRPs) are conserved in Gram-positive bacteria. They are crucial for modulating biofilm formation and bacterial-host interactions. Glycosylation of SRRPs plays a pivotal role in the process; thus understanding the glycosyltransferases involved is key to identifying new therapeutic drug targets. The glycosylation of Fap1, an SRRP of Streptococcus parasanguinis, is mediated by a gene cluster consisting of six genes: gtf1, gtf2, gly, gtf3, dGT1, and galT2 Mature Fap1 glycan possesses the sequence of Rha1-3Glc1-(Glc1-3GlcNAc1)-2,6-Glc1-6GlcNAc. Gtf12, Gtf3, and dGT1 are responsible for the first four steps of the Fap1 glycosylation, catalyzing the transfer of GlcNAc, Glc, Glc, and GlcNAc residues to the protein backbone sequentially. The role of GalT2 and Gly in the Fap1 glycosylation is unknown. In the present study, we synthesized the fully modified Fap1 glycan in Escherichia coli by incorporating all six genes from the cluster. This study represents the first reconstitution of an exogenous stepwise O-glycosylation synthetic pathway in E. coli In addition, we have determined that GalT2 mediates the fifth step of the Fap1 glycosylation by adding a rhamnose residue, and Gly mediates the final glycosylation step by transferring glucosyl residues. Furthermore, inactivation of each glycosyltransferase gene resulted in differentially impaired biofilms of S. parasanguinis, demonstrating the importance of Fap1 glycosylation in the biofilm formation. The Fap1 glycosylation system offers an excellent model to engineer glycans using different permutations of glycosyltransferases and to investigate biosynthetic pathways of SRRPs because SRRP genetic loci are highly conserved.


Assuntos
Adesinas Bacterianas/metabolismo , Proteínas de Bactérias/metabolismo , Glicoproteínas/metabolismo , Serina/metabolismo , Streptococcus/metabolismo , Biofilmes , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Teste de Complementação Genética , Glicosilação , Streptococcus/crescimento & desenvolvimento
14.
Nat Commun ; 5: 4339, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25023666

RESUMO

More than 33,000 glycosyltransferases have been identified. Structural studies, however, have only revealed two distinct glycosyltransferase (GT) folds, GT-A and GT-B. Here we report a 1.34-Å resolution X-ray crystallographic structure of a previously uncharacterized 'domain of unknown function' 1792 (DUF1792) and show that the domain adopts a new fold and is required for glycosylation of a family of serine-rich repeat streptococcal adhesins. Biochemical studies reveal that the domain is a glucosyltransferase, and it catalyses the transfer of glucose to the branch point of the hexasaccharide O-linked to the serine-rich repeat of the bacterial adhesin, Fap1 of Streptococcus parasanguinis. DUF1792 homologues from both Gram-positive and Gram-negative bacteria also exhibit the activity. Thus, DUF1792 represents a new family of glycosyltransferases; therefore, we designate it as a GT-D glycosyltransferase fold. As the domain is highly conserved in bacteria and not found in eukaryotes, it can be explored as a new antibacterial target.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Glicosiltransferases/química , Glicosiltransferases/metabolismo , Streptococcus/enzimologia , Cristalografia por Raios X , Regulação Bacteriana da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA